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Characterization of clusters in rapid granular flows
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The clustering phenomenon within two-dimensional, rapid granular, simple shear flows is investigated. Two
characterizations are developed and implemented for monodisperse systems, revealing physically meaningful
insight. First, a new feature of the radial distribution function is identified for these dissipative granular
systems, which is not present in molecular (nondissipative) systems. Namely, a long-scale minimum occurs at
a distance representing the average distance between the center of a cluster and the center of a dilute region.
Results indicate that center-to-center distances are least (i.e., clusters are most tightly packed) for systems of
moderate particle concentrations and low restitution coefficients. In addition, concentration and temperature
measurements of clustered and dilute regions are also obtained using a Gaussian filter that is based on this
center-to-center distance and, thus, provides a means of appropriately defining local concentrations. These
results confirm previous findings that cluster prevalence increases with decreasing dissipation and that clus-
tered regions have lower temperatures than their dilute counterparts. Surprisingly, however, the results indicate
that cluster prevalence, defined by normalized concentration differences between the two regions, decrease

monotonically with an increase in overall particle concentration.

DOLI: 10.1103/PhysRevE.79.021304

I. INTRODUCTION

Solids flows are ubiquitous in daily life and industry. The
salt and pepper on the dinner table, solid detergents under the
sink, and aspirin in the cupboard only hint at the trillion
kilograms of granular materials produced each year in the
U.S. alone [1]. Indeed, 50% of the products in the chemical
industry are solid in form, but this fraction is small compared
to the 75% of the raw materials in this industry that are
solids [2]. Furthermore, particulate systems in which the gas
phase also plays an important role are common in industry,
including fluidized beds used in coal gasification, fluid cata-
Iytic cracking, production of titania, etc. Accordingly, the
investigation of pure granular systems will also provide in-
sight into the granular phase of these multiphase systems.
Accordingly, the focus of the current work is on granular
systems, and particularly rapid flows, in which all momen-
tum is transferred by virtue of binary particle-particle inter-
action.

Of particular interest within the these particulate systems
is the phenomenon known as clustering—the transient for-
mation of regions of high particle concentration. Clusters
have been shown to play an important role in the flow char-
acteristics of systems as varied as planetary rings [3-5],
high-velocity fluidized beds [6—8] (where interstitial fluid ef-
fects are also important), and granular jets [9]. More gener-
ally, these transient formations have been observed within
homogeneous cooling systems [ 10-12], simple shear systems
[13-16], and Couette systems [17,18], each exhibiting a
slightly different form of the inhomogeneity.

The precipitating factor for cluster formation in granular
systems is particle inelasticity. It should be noted that an
additional hydrodynamic driving force arises in gas-solid
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systems [8]. Goldhirsch and Zanetti [10] provided a simple
explanation for the relationship between particle inelasticity
and cluster formation. A positive density fluctuation results
in an increased collision frequency, which in turn decreases
the local granular temperature (i.e., kinetic energy of fluctu-
ating particle motion) due to the inelastic interaction between
particles. The decreased temperature yields a decreased pres-
sure, providing a gradient that continues to drive particles
toward the low-pressure, high-density region. Diffusion of
particles out of the cluster serves to balance the driving force
toward cluster formation.

Clusters were originally observed in two-dimensional
simple shear flows [13], in which they arise with a dominant
orientation of +45° from the positive x axis [14,15,19] [see
Fig. 1 for axis definitions and Fig. 3(a) for a sample snap-
shot]. In spite of this general alignment, individual clusters in
simple shear have been shown to exhibit a very dynamic
nature, consistently forming, rotating, and dissipating [14].
Given this behavior, the primary means of evaluating sys-
tems containing such clusters has been a Fourier analysis of
a series of snapshots. The resulting Fourier frequency space,
from which cluster measurements are made, reflects the com-
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FIG. 1. Simple shear system. Primary computational cell is
shaded light gray with black particles. Periodic boundaries are
white with gray particles.

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.79.021304

R. BRENT RICE AND CHRISTINE M. HRENYA

plex spatial orientation of particles and clusters in the sys-
tem. Physical interpretation of the frequency space is not,
however, always straightforward. Hopkins and Louge [13]
briefly discuss an ideal case of a two-dimensional sine wave
oriented at an angle as an approximation of a clustered sys-
tem. This simple case yields very clear dominant frequencies
in the x and y directions, by which the orientation of the sine
wave (i.e., the orientation of the “clusters”) and its wave-
length (i.e., distance between cluster centers) are easily de-
termined. When particle configurations are more complex
[e.g., two-dimensional simple shear flows as displayed in
Fig. 3(a)], the complexity of the resulting Fourier analysis
follows suit. Features arise throughout the two-dimensional
frequency space, reflecting the orientation of clusters and the
frequency of their appearance in all directions (e.g., perpen-
dicular to their alignment, parallel to their alignment, etc.).
Although dominant frequencies still provide a means of
gathering characterization quantities, their relationship to the
physical attributes of the system is not as clear.

To build upon previous efforts, the objective of this work
is to establish characterizations of clusters that have straight-
forward physical interpretations, which will be important in
future studies of more complex (e.g., polydisperse) systems
[20-22]. Here, discrete element models (DEM) will be
implemented for the investigation of two-dimensional granu-
lar systems under simple shear flow. Two characterizations
are developed and implemented for monodisperse systems: a
modified form of the radial distribution function g(r) and a
concentration and temperature analysis. Both characteriza-
tion methods provide insight regarding clustered and dilute
regions. The data reveal a new feature in the radial distribu-
tion function: namely, a long-scale minimum. The associated
length scale, which is not present in elastic systems, provides
a measure of the average distance between the center of clus-
tered regions (in the direction perpendicular to their known
alignment). This quantity is found to be smallest for more
inelastic systems at moderate particle concentrations. Fur-
thermore, this length scale is utilized as a basis for a Gauss-
ian filter used to collect concentration and temperature mea-
surements. The ensuing analysis of region concentrations
reveals that the disparity between averaged clustered-region
and dilute-region concentrations is greatest at moderate par-
ticle concentrations, though normalized concentration differ-
ences are found to decrease monotonically as the particle
concentration increases. Also, an analysis of region-specific
temperatures reveals that clustered-region temperatures are
lower than dilute-region temperatures over a broad range of
systems.

II. COMPUTATIONAL APPROACH
A. Simulation

In the current study, the clustering instability is investi-
gated via two-dimensional, discrete-particle simulations of
granular systems. Figure 1 illustrates the two-dimensional
(Lyys X Lyy,) computational system, in which simple shear
flow is provided by Lees-Edwards boundary conditions [23].
The primary computational cell is indicated by the shaded
region. Right and left boundaries are standard periodic
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TABLE 1. System parameter ranges.

Parameter Symbol Value (or range)
System size Ly Ly /d>=90
Particle size d

Volume fraction v 0.1-0.5
Restitution coefficient e 0.6 and 0.8

boundaries, while upper and lower periodic boundaries move
in opposite directions according to a shear velocity (vy).

Particles are treated as frictionless, inelastic, circular disks
of constant material density. Due to a lack of body forces,
particle trajectories are linear. Each particle is moved for-
ward in time and space according to an event-driven algo-
rithm [24]. Collisions between particles are considered to be
binary and instantaneous. A hard-sphere model [24] provides
collision resolution based on the conservation of momentum
and the dissipation of energy due to particle inelasticity. The
resulting post-collision velocities are given by

1 — _
—% — —
v, =v,-—5(l+e)(k-vij)k, (1)
where the asterisk indicates a post-collision quantity, & is a
unit vector pointing from the center of particle i to the center
of particle j, v;; is defined as 0;—0v;, and e is the restitution
coefficient:

—— )

Values of system parameters used in this study are given
in Table I. System sizes (L;,,/d) have been selected such that
clusters are allowed to fully form, per the observations of
Liss and Glasser [15] that clustering intensifies with system
size until a saturation point is reached. The collection of data
from simulations occurs after a statistical steady state is
achieved. For the purposes of the current work, the statistical
steady state is demarcated by a system time associated with
1000 collisions per particle, after which system stresses have
been observed to deviate less than 2% from the average
stress values.

After this statistical steady state has been achieved, simu-
lation data are collected in the form of snapshots at intervals
of four to five collisions per particle. Each snapshot consists
of all particle positions and velocities. From these snapshots,
the radial distribution function and analysis of region-
specific (clustered and dilute) concentrations and tempera-
tures are obtained, as detailed below.

B. Radial distribution function

The radial distribution function (g) is a measure of the
spatial distribution of particles in the system. Specifically, g
is defined as the ratio of the local particle concentration (at a
specified distance r from the center of any given particle) to
the global (system average) particle concentration. For the
purposes of this work, two modifications have been made to
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FIG. 2. (Color online) Binning implementation for the radial
distribution function in the simple shear flow of inelastic grains.
Arrows indicate the direction of shear. (a) Standard implementation
of bins in a radial direction from a particle center. (b) Modified
implementation of bins in a single direction—i.e., perpendicular to
the orientation of clusters.

the standard implementation of the radial distribution func-
tion. First, particle concentration is measured based on the
area fraction of particles, rather than the number of particles,
which is standard for molecular systems. This treatment pro-
vides a more general description of the polydisperse particu-
late systems, which will be considered in a future work. Sec-
ond, as depicted in Fig. 2, the directional nature of g is
modified, so as not to be radial. Instead, g is calculated for a
single direction: perpendicular to the known orientation of
clusters in simple shear flow (+45° from the positive x axis
[13-15,19]). Bins are sized such that they are 0.02d in the
direction of r and 20d particle diameters in the direction
perpendicular to r [see Fig. 2(b) for the orientation of r]. The
general features of g remain intact for this modified binning
method, but the pronunciation of the new long-scale feature
associated with these systems is enhanced; this feature will
be discussed in the Results and Discussion section.

C. Concentration and temperature measurements by region
(clustered or dilute)

Further analysis of clustered systems is made via direct
measurement of averaged properties in the clustered and di-
lute regions. Such measurement requires that the system be
depicted as a series of local concentrations rather than a se-
ries of discrete particles provided by the simulation snap-
shots. For this reason, the snapshots of discrete particles, as
shown in Fig. 3(a), are first converted to concentration grids.
Initially, the grid cells are sized to be ~0.05% of the length
of the system (Ly,,). Given the small grid size, particles are
considered to be centered in the grid cell in which the par-
ticle center is located, whereby the area of individual par-
ticles may be distributed across neighboring grid cells in a
straightforward and computationally efficient manner. These
small grid cells are then accumulated into larger grid cells
with a size of L,~ 0.2d, which provides accurate calculation
of mean velocities and subsequent calculation of fluctuating
velocities. Details regarding the selection of the grid sizes,
including appropriate sensitivity analyses, are described in
[25].

The system is then smoothed as shown in Fig. 3(b) by
convolution of the concentration grid with a two-dimensional
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FIG. 3. Example snapshot illustrating (a) discrete particles, (b)
the filtered system (white indicates a particle concentration of 0.0
and black indicates a particle concentration of 0.4), and (c) the
assignment of clustered (black) and dilute (white) regions. System
parameters are as follows: v=0.2, ¢=0.6, and L,/ d=90.

(2D) Gaussian filter (parameters defining this filter are de-
scribed in the next section) via the FILTER2 function in OC-
TAVE (an open source implementation of MATLAB). Finally,
grid cells in the smoothed system are classified as clustered
or dilute, based on the relationship between their concentra-
tion and the average concentration of the system. Concentra-
tions above the average are designated as clustered regions.
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Concentrations below the average are designated as the di-
lute regions. This classification of clustered and dilute re-
gions is illustrated by Fig. 3(c).

1. Gaussian filter

The Gaussian filter has been designed with the intent of
appropriately defining clustered and dilute regions, as de-
scribed in the following paragraphs. Two considerations in
the selection of filter parameters are as follows. First, the
sensitivity of measured clustered- and dilute-region proper-
ties to the filter parameters should be small. Second, unnec-
essary computational expense should be avoided. Parameters
dictating the filtering process are discussed here. Details re-
garding their selection and pertinent sensitivity analyses are
again left to [25].

As suggested above, the prime consideration in designing
the Gaussian filter is whether the filter reflects the local prop-
erties: namely, those of clustered and dilute regions. If the
Gaussian filter is too wide, clustered-region properties will
be washed out as a function of the inclusion of the dilute
region. If the Gaussian filter is too thin, the filtered system
will approximate the system of discrete particles with local
concentrations nearing zero and unity. In other words, the
filtered concentrations would reflect the presence of indi-
vidual particles or lack thereof, rather than the concentration
of the clustered or dilute region under consideration. In this
work, the most heavily weighted region of the Gaussian filter
will be designed to span the estimated distance between the
center of a cluster and the center of a dilute region (i.e., an
estimate of the width of each region). This length will be
determined based on L (i.e., the location of the long-scale
minimum of g), which is discussed in Sec. IIT A. In particu-
lar, since a Gaussian filter will be most heavily weighted
within one standard deviation of the mean, the filter is de-
signed such that the length scale L equals two standard de-
viations (one on either side of the mean), or L=2¢. The full
Gaussian filter incorporates two standard deviations on either
side of the mean.

2. Region-specific concentration and temperature measurements

The smoothing process and designation of clustered and
dilute region concentrations is performed for a series of
snapshots. Based on a sensitivity analysis that is not shown
here, the series of snapshots cumulatively contains at least
30% 10° particles (i.e., the number of snapshots times the
number of particles in the system). Concentrations of
clustered- and dilute-region grid cells over all snapshots are
averaged in order to obtain average concentrations of each
region. In addition, the number of clustered- or dilute-region
grid cells relative to the total number of grid cells provides
an indication of the average area fraction of the system that
is clustered or dilute.

Region-specific temperatures are evaluated in a similar
manner. For the purposes of assessing granular temperature,
however, the classification of clustered and dilute regions is
modified in an effort to more clearly differentiate between
clustered and dilute regions. Specifically, a buffer of 15%
above and below the average concentration of the system is
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used to distinctly separate the concentrations associated with
the clustered and dilute regions. Clustered and dilute regions
that are defined in this manner better elucidate the presence
of temperature gradients between the two regions without the
obfuscation of the ill-defined border between the two re-
gions.

To determine the temperature, the average particle veloc-
ity at each point in the shear field is also needed. Average
velocities in the x direction are found as a function of y by
averaging the velocities of particles whose centers lie within
bands of width L, (grid cell size) at each y value, incorpo-
rating all snapshots in the averaging process. After the deter-
mination of average particle velocities, snapshots are re-
evaluated in order to find fluctuating velocities according to
the region classifications. Granular temperatures for each re-
gion are then calculated via

1
TX = 5m<v),fv}/(>’ (3)
where v’ is the fluctuating particle velocity, the subscript X
indicates the clustered or dilute region, and (- - -) indicates the
average. Temperature ratios (7,,,/Ty;) are calculated as av-
erages of instantaneous temperature ratios, rather than ratios
of averaged temperatures.

III. RESULTS AND DISCUSSION
A. Appearance of a long-scale minimum for inelastic systems

As discussed in Sec. II B, the radial distribution function
(g) measures local particle concentrations relative to the av-
erage particle concentration, where local is defined as a dis-
tance (r) from the center of any given particle. For molecular
(elastic) systems in shear flow, the presence of prominent
peaks within a few particle diameters is well established.
These short-scale features arise as a result of the (in)ability
of particles to penetrate one another, which is known as vol-
ume exclusion. For the inelastic systems under consideration
here, a new feature appears in the radial distribution function
profile at longer distances (larger r/d values). This long-
scale feature is the focus of the current effort.

Radial distribution functions for both elastic and inelastic
systems are provided in Fig. 4, illustrating the similarities
and differences at varying restitution coefficients. Prior to the
discussion of elastic versus inelastic features, a note should
be made regarding the nonzero values below the contact dis-
tance (r/d<1). Such nonzero values are not observed in the
typical (radial) calculation of g. Nevertheless, the modifica-
tion of the binning scheme from radial to unidirectional (per-
pendicular to cluster alignment), as discussed in Sec. II B,
results in these nonzero values. For example, two particles
that are side by side in the direction of cluster alignment are
separated by zero distance in the direction perpendicular to
cluster alignment, providing local particle concentrations that
are greater than zero for r/d<<1.

Unlike the nonzero values before the distance associated
with contact, the remaining features of g are not artifacts of
the binning scheme. At the distance associated with contact
(r/d=1), a peak is observed for both elastic and inelastic
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FIG. 4. Radial distribution functions (g) for systems defined by
Ly,,/d=110; v=0.2, and e=0.6 (light gray), 0.8 (medium gray), and
1.0 (black). The r/d location of the long-scale minimum provides
the length scale (L), as indicated on plot for e=0.6. The value of L
is also shown to scale by inset system snapshot for e=0.6.

systems. This peak decreases with an increasing restitution
coefficient. This contact value (g,) is well known, and the
elastic value serves an important role in granular kinetic
theory.

Beyond g, two other features arise for the inelastic sys-
tems: a second, smaller peak near g, and a more broad, local
minimum at distances further from the distance associated
with contact. The presence of the second, short-scale peak in
the radial distribution functions of clustered systems has
been observed by Alam and Luding [22]. Such peaks in the
vicinity of the contact distance, however, are also known to
arise for elastic systems with higher particle packings. In the
case of inelastic systems, the higher local packing fraction
associated with the clustered regions gives rise to this short-
scale feature, which would otherwise not be seen for systems
containing lower overall particle concentrations.

The final feature appears only for inelastic systems as a
broad, local minimum at longer distances (i.e., r/d>=4).
As the restitution coefficients increases, the location L of this
minimum appears at increasing r/d locations, ultimately ap-
proaching infinity (i.e., no long-scale minimum) when the
restitution coefficient is unity (i.e., an elastic system). The
physical meaning of this long-scale minimum can be inferred
from the definition of g. Since g is a measure of local particle
concentrations, the r/d location of the minimum indicates a
distance from any given particle (in the direction perpendicu-
lar to known cluster alignment) where another particle would
least likely be found. In the context of long-scale concentra-
tion inhomogeneities, such as clusters, a minimum located
beyond the distances affected by exclusion would be associ-
ated with the distance from any given particle where the
dilute region would be most likely found.

In an effort to further elucidate the physical meaning the
long-scale minimum L, a variety of ideal, one-dimensional
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FIG. 5. Sample one-dimensional systems, for which the radial
distributions are shown in Fig. 6. Shaded rectangles indicate the
clustered region. White rectangles indicate the dilute region. (a)
Thin clusters: fy=0.2. (b) Equal cluster- and dilute-region widths:
fv=0.5. (c) Thick clusters: f,;=0.8.

systems are studied. These ideal, one-dimensional systems
are constructed as a series of high-particle-density (clustered)
regions separated by low-particle-density (dilute) regions, as
illustrated by Fig. 5. Clustered- and dilute-region widths are
constant over the system, and each region is populated by a
random distribution of particles according to region-specific
number densities. Particles are treated as points of infinitesi-
mally small diameter, thereby removing the need to account
for exclusion effects. Each one-dimensional system contains
250 clusters (N-=250). Other system attributes are defined
based on the fraction of the system that is clustered (fy), the
fraction of the particles that reside in the clustered region
(fp), and the total number of particles in the system (Np).
Systems were investigated with the following parameters:
Np/N=30, 40, and 50; f,=0.2, 0.5, and 0.8; fy<fp<<1.0.
Observations noted below are consistent across this param-
eter space.

Radial distribution functions for these ideal systems are
provided in Fig. 6. Long-scale minima appear as troughs
with distinct edges. For a scaled comparison, the clustered-
and dilute-region widths (W,,, and W, respectively) are
provided as insets below these troughs. As indicated by these
insets, the locations of the trough edges are dictated by the
clustered- and dilute-region widths. The edge of the trough at
the smallest r/d value, where the actual minimum occurs, is
consistently associated with the width of the thinnest of the
two regions. The corresponding edge at the largest r/d is
consistently associated with the widest of the two regions.

The troughlike long-scale minima observed for the ideal
systems clearly differ from the smoothed minima observed in
simulated systems (Fig. 4). Ideal systems may be modified to
better approximate the more varied nature of clusters in 2D
simple shear flow systems. In particular, clustered- and
dilute-region widths and concentrations in the ideal systems
may be randomly varied. Figure 7(a) illustrates the effect of
randomly varied region concentrations on the long-scale
minimum, while Fig. 7(b) illustrates the effect of randomly
varied region widths. The troughlike minima persist when
region concentrations are varied [Fig. 7(a)]. On the contrary,
the variation of region width tends to smooth the shape of the
trough [Fig. 7(b)]. As the extent of the width variation in-
creases from 10% to 30% of the mean width, the distinct
edges of the trough minimum give way to a smoothed mini-
mum; the r/d location of this minimum approaches the av-
erage width of the clustered and dilute regions (indicated by
the vertical dashed line). Practically, the location of this new
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FIG. 6. Sample one-dimensional radial distribution functions for
the systems shown in Fig. 5. For all systems, Np/N-=40. Inset
shaded and white rectangles represent clustered- and dilute-region
widths, respectively, for comparison with the radial distribution
function features. (a) Thin clusters: f,;=0.2 and f»=0.6. (b) Equal
cluster- and dilute-region widths: f,=0.5 and fp=0.7. (c) Thick
clusters: f,;=0.8 and fp=0.9.

minimum may be said to tend toward the average distance
from the center of a clustered region to the center of a dilute
region.

Collectively, observations of the one-dimensional systems
indicate that the location and form of the long-scale mini-
mum are determined by clustered- and dilute-region widths.
If clustered- and dilute-region widths are consistently sized,
the long-scale minimum forms a trough with distinct edges.
The actual minimum is located at the width of the thinnest of
the two regions. However, if the widths of these regions
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FIG. 7. Close-ups of long-scale minima for one-dimensional
systems. Dashed line indicates the average of the clustered- and
dilute-region widths—i.e., (W_,+W;)/2. Inset shaded and white
rectangles represent average clustered- and dilute-region widths, re-
spectively, for comparison with the radial distribution function fea-
tures. (a) W, and W,; are held constant throughout the system,
while v, varies from its mean by by 13%, 27%, and 40%, as
displayed in the plot. Other system parameters are defined by fy
=0.7, fp=0.96, and Np/N=40. (b) v.,, and vy are each held
constant throughout the system, while W, varies from its mean by
10%, 20%, and 30%, as displayed in the plot. Other system param-
eters are defined by f,=0.7, fp=0.95, and Np/N-=40.

randomly vary about average widths, the long-scale mini-
mum becomes smooth and its location tends toward the av-
erage width of the two regions. Given that 2D simple shear
flow systems exhibit spatial and temporal variation in the
size of clustered and dilute regions, the smooth long-scale
minima arising for such systems are expected to tend toward
this center-to-center distance. Herein lies a practical physical
interpretation of the location of the long-scale minimum,
which will be referred to as the radial distribution function
length scale L.

B. Cluster characterization measurements in monodisperse,
simple shear flows

Having established the methods by which clustered, 2D,
simple shear flows may be evaluated, these methods are now
applied to monodisperse systems. Length scales (L) will pro-
vide insight into the average distance between the clustered
and dilute regions. Region analysis will provide insight into
the concentrations and temperatures associated with the clus-
tered and dilute regions.

Length scales are provided in Fig. 8 as a function of par-
ticle concentration. Data are provided for two restitution co-
efficients: e=0.6 (circles) and 0.8 (squares). As discussed in
Secs. II B and III A, the radial distribution function has been
designed such that the resulting length scales are dictated by
the clustered and dilute region widths in the direction per-
pendicular to cluster alignment. Specifically, the length
scales tend toward the distance between the center of the
clustered region and the center of the dilute region. Figure 8
indicates that the shortest length scales arise at low restitu-
tion coefficients (consistent with Fig. 4) and moderate par-
ticle concentrations.

Qualitatively, the length-scale trends are in agreement
with the Fourier-based length-scale trends observed by Hop-
kins and Louge [13]. The physical interpretation of the
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FIG. 8. Variation of length scales with particle concentration.
Restitution coefficients of 0.6 and 0.8 are represented by circles and
squares, respectively.

Fourier-based length scale is, however, less straightforward
than that of the radial distribution function length scale.
Whereas the radial distribution function has been designed to
reflect clustered- and dilute-region widths in a single direc-
tion (perpendicular to the alignment of clusters), the Fourier
transform is more ambiguous. The Fourier frequency space,
from which the Fourier length scale is derived, reflects all
frequencies pertaining to the system. For the purpose of ex-
planation, consider a system in which clusters of particles are
represented by the dark squares of a checkerboard. If the
bottom and left sides of the checkerboard are aligned along
the x and y axes, respectively, and the checkerboard squares
(clustered and dilute regions) are stretched in the x direction
to form rectangles, then the orientation of individual clusters
is parallel to the x axis. However, the cluster-to-cluster ori-
entation (i.e., from the lower left corner to the upper right
corner) exhibits a nonzero angle with respect to the x axis.
The Fourier frequency space reflects both of these orienta-
tions in the 2D frequency space, such that dominant frequen-
cies (and resulting measurement of length scale, cluster ori-
entation, etc.) are not clearly associated with a single
physical feature. Therefore, the radial distribution function
finds its value in the more straightforward physical interpre-
tation of the resulting length scale.

The region concentration analysis adds to the physical
understanding provided by the radial distribution function.
Concentration differences between clustered and dilute re-
gions are presented in Fig. 9(a) as a function of particle
concentration. Concentration differences are consistently
lower at higher restitution coefficients, which follows natu-
rally from the fact that clusters are expected to be less pro-
nounced for more elastic systems. Moreover, concentration
differences are greatest at moderate particle concentrations.
This behavior is qualitatively consistent with the Fourier ob-
servations of Hopkins and Louge [13], who concluded that
clusters are most prominent in systems with moderate par-
ticle concentrations.

As a different measure of cluster “prevalence,” concentra-
tion differences may be normalized by the overall particle
concentration, as presented in Fig. 9(b). Similar to the non-
normalized concentration differences in Fig. 9(a), normalized
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FIG. 9. Concentration differences between clustered and dilute
regions over total particle area fraction. Restitution coefficients of
0.6 and 0.8 are represented by circles and squares, respectively. (a)
Non-normalized. (b) Normalized by the total particle concentration.

concentration differences increase with increasing restitution
coefficient, reflecting the tendency for clusters to be better
pronounced for more inelastic systems. With increasing par-
ticle concentration, normalized concentration differences de-
crease. Such behavior is consistent with the fact that systems
become more packed at higher concentrations; in the limit of
close packing, clusters effectively vanish. However, the be-
haviors of the normalized and non-normalized concentration
differences are qualitatively different at low concentrations,
where the non-normalized concentration differences decrease
with increasing concentration and the normalized concentra-
tion differences increase.

As a final measure of region properties, ratios of
clustered-region to dilute-region temperatures (7, / T;) are
provided in Fig. 10. Temperature ratios that are consistently
less than unity indicate that clustered-region temperatures are
lower than dilute-region temperatures. Such temperature dis-
parity between the regions reflects the disparity in collision
frequency and consequent energy dissipation experienced
within the two regions. The higher particle concentrations in
the clustered regions provide greater collision frequencies,
more energy dissipation, and, thus, lower temperatures.
These temperature measurements are consistent with those of
Tan and Goldhirsch [14] for a single two-dimensional simple
shear flow system and indicate the robustness of this obser-
vation. They are also in agreement with temperature obser-
vations for granular flow in Couette systems [17,18].
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FIG. 10. Ratio of clustered region temperature to dilute region
temperature over total particle area fraction. Restitution coefficients
of 0.6 and 0.8 are represented by circles and squares, respectively.

C. Interpretation of the depth of the long-scale minimum

While the location (r/d) of the long-scale minimum
within g provides a length scale associated with the average
distance from the center of a clustered region to the center of
a dilute region, the value of g at this minimum also provides
physical insight. The “depth” (D) of the minimum is defined
as

D=1-g(L), (4)

where g is the radial distribution function and L is the loca-
tion of the long-scale minimum. Since (i) g is a measure of
local concentration relative to the average concentration and
(ii) the long-scale minimum is associated with the dilute re-
gion, g(L) may be approximated as v,/ v, thus providing an
estimated depth (D,,,) from Eq. (4) as

Dyy=1-24 5)

est
14

where vy, is the dilute region concentration and v is the
average concentration of the system.

Depth data are shown in Fig. 11 as a function of overall
particle concentration. Depths per Eq. (4) are shown in Fig.
11(a), and estimated depth values per Eq. (5) (incorporating
v,; as calculated by region concentration analysis) are shown
in Fig. 11(b). Trends are qualitatively consistent between the
two depth values. Depths decrease with increasing restitution
coefficient and with increasing total particle concentration.
The decrease in depth with increasing restitution coefficient
reflects the fact that clusters are less pronounced with more
elastic systems. In other words, smaller differences between
the average concentration and the dilute-region concentration
arise for less clustered, more elastic systems. With respect to
the overall particle concentration, the decreasing depths re-
flect the fact that more densely packed systems do not allow
clusters to be strongly pronounced. In the extreme of the
close-packed limit, clusters do not exist and the consequent
depth would be zero. This monotonic behavior is consistent
with the normalized concentration differences displayed in
Fig. 9(b).
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FIG. 11. Radial distribution function depth at the location of the
long-scale minimum [g(L)]. Restitution coefficients of 0.6 and 0.8
are represented by circles and squares, respectively. (a) Depths as
measured based on g. (b) Estimated depths per Eq. (5).

In spite of the qualitative consistency between D and D,
trends, strong quantitative differences exist. This lack of
quantitative agreement is attributed to the influence of clus-
tered regions on the value of g at the long-scale minimum.
Although the location of the long-scale minimum reflects the
distance from any particle where the dilute region is most
likely to be found, all particles will not see the dilute region
at this distance. Therefore, instead of truly reflecting the
dilute-region concentration, the depth will reflect a concen-
tration that is greater than the dilute region concentration.
The reflection of this higher concentration will yield a depth
that is less than that associated purely with the dilute region.
In other words, D will be less than D, as is observed in Fig.
11.

IV. CONCLUDING REMARKS

Two characterization methods—namely, a modified radial
distribution function and measurements of concentrations
and temperatures of clustered and dilute regions—have been
presented for the purpose of further elucidating the charac-
teristics of clustered, two-dimensional simple shear flow.
While the current analysis provides results qualitatively con-
sistent with those of previous Fourier analyses, the current
approach provides additional quantities plus quantities with
cleaner physical interpretation.

First, a new feature in the radial distribution function is
shown to exist for inelastic systems. Namely, a long-scale
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minimum arises beyond distances associated with particle
exclusion. Two measures arise from this new long-scale
minimum: a length scale L based on the location of the mini-
mum and a depth D based on the value of g at the minimum.
The length scales L are found to represent average separation
distances between the center of a clustered region and the
center of a dilute region in the direction perpendicular to
cluster alignment. For monodisperse systems, these separa-
tion distances are smallest (i.e., clusters are most tightly
spaced) for systems with moderate particle concentrations
and low restitution coefficients. These trends are qualita-
tively consistent with the Fourier analysis results of Hopkins
and Louge [13], though the physical interpretation is more
direct in the case of the current characterization. More spe-
cifically, the length scale obtained from the complex Fourier
frequency space reflects various orientations associated with
the clustered system, whereas L is directly linked to inter-
cluster distances. The length scale L finds further use in es-
tablishing the width of a Gaussian filter necessary to measure
clustered- and dilute-region concentrations. The second ra-
dial distribution function measurement—namely, the depth
D——provides an additional indication of the difference be-
tween the average and dilute-region concentrations, but this
measure is unnecessary in light of the directly measured
clustered- and dilute-region concentrations.

Directly measured concentration differences between
clustered and dilute regions (v,,,—vy;) offer clear physical
insight into the prevalence of clustering in granular systems.
With respect to particle elasticity, concentration differences
clearly reveal that clusters are more prevalent in more inelas-
tic systems (i.e., lower restitution coefficients). The cluster
prevalence trends with respect to particle concentration are
different depending on the normalization of the concentra-
tion difference data. Non-normalized data (v,,,—v,;) reveal
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that cluster prevalence is greatest at moderate particle con-
centrations. This observation is consistent with the Fourier
analysis observations of Hopkins and Louge [13], which ana-
lyzed non-normalized particle concentrations. Normalized
data [(v.,,—vg)/v] alternatively reveal that clusters are
most prevalent for low concentrations. In particular, the
prevalence of clusters diminishes monotonically as the sys-
tem becomes more packed, the extreme of which is a close-
packed system in which no clusters would exist. Finally,
temperatures of clustered and dilute regions have been mea-
sured directly. For a wide range of monodisperse systems,
clustered regions have been shown to exhibit lower tempera-
tures than dilute regions.

The presented analysis of monodisperse systems provides
a clear foundation for the application to polydisperse sys-
tems. Length scales and region-specific measurements may
be determined for each unlike species, in addition to the
combination. Consequently, the physical interpretation dem-
onstrated for monodisperse systems becomes valuable for the
evaluation of each (sub)set of particles, continuing to avoid
the complications regarding the physical interpretation of
Fourier analysis. Accordingly, the role of each species in the
clustered system may be investigated, segregation behavior
may be elucidated, and the effect of various particle size
distributions on the prevalence of clusters may be deter-
mined. Such considerations will be made for both binary and
continuous size distribution systems in a future paper.
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